Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
The set Q consists of the following terms:
rev1(nil)
rev1(.2(x0, x1))
car1(.2(x0, x1))
cdr1(.2(x0, x1))
null1(nil)
null1(.2(x0, x1))
++2(nil, x0)
++2(.2(x0, x1), x2)
Q DP problem:
The TRS P consists of the following rules:
REV1(.2(x, y)) -> ++12(rev1(y), .2(x, nil))
REV1(.2(x, y)) -> REV1(y)
++12(.2(x, y), z) -> ++12(y, z)
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
The set Q consists of the following terms:
rev1(nil)
rev1(.2(x0, x1))
car1(.2(x0, x1))
cdr1(.2(x0, x1))
null1(nil)
null1(.2(x0, x1))
++2(nil, x0)
++2(.2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
REV1(.2(x, y)) -> ++12(rev1(y), .2(x, nil))
REV1(.2(x, y)) -> REV1(y)
++12(.2(x, y), z) -> ++12(y, z)
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
The set Q consists of the following terms:
rev1(nil)
rev1(.2(x0, x1))
car1(.2(x0, x1))
cdr1(.2(x0, x1))
null1(nil)
null1(.2(x0, x1))
++2(nil, x0)
++2(.2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
++12(.2(x, y), z) -> ++12(y, z)
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
The set Q consists of the following terms:
rev1(nil)
rev1(.2(x0, x1))
car1(.2(x0, x1))
cdr1(.2(x0, x1))
null1(nil)
null1(.2(x0, x1))
++2(nil, x0)
++2(.2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
++12(.2(x, y), z) -> ++12(y, z)
Used argument filtering: ++12(x1, x2) = x1
.2(x1, x2) = .1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
The set Q consists of the following terms:
rev1(nil)
rev1(.2(x0, x1))
car1(.2(x0, x1))
cdr1(.2(x0, x1))
null1(nil)
null1(.2(x0, x1))
++2(nil, x0)
++2(.2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
REV1(.2(x, y)) -> REV1(y)
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
The set Q consists of the following terms:
rev1(nil)
rev1(.2(x0, x1))
car1(.2(x0, x1))
cdr1(.2(x0, x1))
null1(nil)
null1(.2(x0, x1))
++2(nil, x0)
++2(.2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
REV1(.2(x, y)) -> REV1(y)
Used argument filtering: REV1(x1) = x1
.2(x1, x2) = .1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(.2(x, y)) -> ++2(rev1(y), .2(x, nil))
car1(.2(x, y)) -> x
cdr1(.2(x, y)) -> y
null1(nil) -> true
null1(.2(x, y)) -> false
++2(nil, y) -> y
++2(.2(x, y), z) -> .2(x, ++2(y, z))
The set Q consists of the following terms:
rev1(nil)
rev1(.2(x0, x1))
car1(.2(x0, x1))
cdr1(.2(x0, x1))
null1(nil)
null1(.2(x0, x1))
++2(nil, x0)
++2(.2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.